0=-16t^2+520

Simple and best practice solution for 0=-16t^2+520 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+520 equation:



0=-16t^2+520
We move all terms to the left:
0-(-16t^2+520)=0
We add all the numbers together, and all the variables
-(-16t^2+520)=0
We get rid of parentheses
16t^2-520=0
a = 16; b = 0; c = -520;
Δ = b2-4ac
Δ = 02-4·16·(-520)
Δ = 33280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{33280}=\sqrt{256*130}=\sqrt{256}*\sqrt{130}=16\sqrt{130}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{130}}{2*16}=\frac{0-16\sqrt{130}}{32} =-\frac{16\sqrt{130}}{32} =-\frac{\sqrt{130}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{130}}{2*16}=\frac{0+16\sqrt{130}}{32} =\frac{16\sqrt{130}}{32} =\frac{\sqrt{130}}{2} $

See similar equations:

| 16+5x=17+5-3 | | 9x-24=2x-5 | | 4x-2=6-3x | | 8x7=(5+)x7 | | 7/x+5=x+5/x^2+7x | | 3(x+9)=-4(6-x) | | x+6=6x-64 | | 9^x=200 | | 9^2-9x=0 | | 4(x-5)=-6+2x | | 13x=74+16-x | | x-((.17x+40)+.18(.17x+40))=550 | | 5x-12+3x=13x+5(1-x) | | 8x(4x+5)=90 | | 10(x-7)=-50 | | 0.2*t^2-3t+10.4=100 | | 4x+6=1+4x | | x3-2x^2=50 | | 10x+3=2x-13 | | 7x=7x-3 | | 9x+5=9x+5 | | 2x3−x2=100 | | 2d^2-6d-8d-2d+24=0 | | -9+16x=-601 | | 106=-5x-4 | | 0=2+x-18 | | y=0.04*(2000-y) | | 2x-3-(4x+5)=4x+15-(x-3) | | -11+x/7=-15 | | -24=-2(x+19) | | 4(p+6)^2=0. | | (2d-8)(d-3)=2d |

Equations solver categories